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The choice of optimal lag for Kriging interpolation of NWP model forecast

Lesya Mykolaivna katsalova, vitalii Mykhailovych shpyg
Ukrainian Hydrometeorological Institute, Prospekt Nauki 37, Kyiv, Ukraine, e-mail: vitold82@i.ua

Abstract. in this paper a kriging method is reviewed and a way of its application in numerical weather prediction 
is proposed. The basic principles of the kriging are shown; the main advantage is its accuracy, but at the same time  
a disadvantage is its large computational complexity. The construction stage of the variographical model is high-
lighted, as it is the most important stage and has a significant impact on the accuracy of interpolation. The algorithm 
for the construction of the variographical model is described. special attention is paid to averaging an experimental 
variogram by introducing a special interval, called “lag”. precisely this issue, according to the authors has a significant 
impact on the effectiveness of the practical application of kriging for the interpolation of meteorological parameters. 
The advantages of averaging an experimental variogram by the administration of lag are presented, and the error that 
arises in this case is estimated. a theoretical study for the determination of the optimal lag was conducted. The lag 
proposed for the determination is guided by the criteria of accuracy and the economy of computer time. The two-
criteria problem is solved, and the formula, which makes it possible to determine the optimal lag on these criteria, is 
received. an example shown here is the application of the obtained results for solving the applied task associated with 
meteorological parameters forecast by the cosMo model.
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1. Introduce

interpolation – a method for the estimation of inter-
mediate values of spatially distributed variables on a dis-
crete set of known values. There are many interpolation 
methods (samarsky, Gulin 1989; samarsky 1982; roache 
1985; stein 1999; will et al. 2015), but their effectiveness 
is largely dependent on the assigned task and distribution 
of the input data (Gunes et al. 2006; arcGis resources 
2013). For the best evaluation in terms of statistics, the 
kriging method was used– its evaluation has the minimum 
variation of error (Matheron 1967; oliver 1990). an im-
portant property of this method is the reproduction of the 
exact values in the measured nodes.

The initial and most important stage of kriging is 
variography, which means the selection of the variogram 
on a set of known values (kanevskiy et al. 1999). a vari-
ogram is a theoretical model that defines the distribution of 
squared differences of values (correlation) depending on 
their relative position, but not depending on their absolute 
position. in the first variographical stage, an experimen-
tal variogram is built according to known values, that is,  
a sequence of pairs: the distance between two points, and 
the value of the variogram for this distance. Because of 
the irregular placement or very large number of the input 
nodes, the experimental variogram may contain a very 
large number of such pairs, leading to significant compli-

cations with the selection of the theoretical model. a large 
number of points on the experimental variogram may also 
increase the interpolation error.

The conventional way to solve this problem is the in-
troduction of a certain interval, known as lag (koshel, Mu-
sin 2000; katsalova, shpyg 2013). Lag divides the axis of 
distances into new intervals, on which, are the averaged 
values of the experimental variogram.

The size of the lag is generally determined on the basis 
of numerical experiments, depending on the criteria gov-
erning the solution of specific problems. among the scien-
tific literature on the kriging method, the authors have not 
come across work in which the choice of the interval was 
structurally substantiated. 

in this work the authors present a study of the selec-
tion of the interval according to the criteria of the accuracy 
of the experimental variogram and the optimisation of the 
determination of the time of a mathematical model for the 
next phase of kriging interpolation.

2. Kriging – basic principles

suppose we have the value of a variable v(x) in the 
points x1, x2,…, xN: v(x1), v(x2),…, v(xN). it is necessary to 
assess the value of v at a point x*. we apply an ordinary 
kriging method.
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The estimation of the value v at point x* defined as  
a linear combination of the known values of the weights 
w1, w2,…, wN is:

Ratios wi are calculated from equation:

where:

μ is a Lagrange multiplier; D(xi, xj) = D(ρκ); ρκ = |xi – xj|, 
i,j ϵ {1, 2,…, N}, κ ϵ {1, 2,…, 0.5N (N + 1)} is a theoreti-
cal variogram, that is, a continuous function describing the 
spatial continuity of spatially distributed data.

From this system are obtained (2) weights w1, w2,…, wn 
which substitute in the equation (1) and produce the evalu-
ation v(x*).

3. Using the lag in the construction of the experimen-
tal variogram

as mentioned above, the important role the accuracy 
of kriging plays in the variographical model (deMers 
1999) reflects how the mutual influence of the values of 
the variable at the nodes changes depending on the chang-
es of distance between them.

The variographical model is built on the basis of an ex-
perimental variogram which is a sequence of pairs (ρ,γ(ρ)), 
ρ is the distance between the two input nodes (kanevskiy 
et al. 1999):

where K is the number of pairs of input points, and the 
distance between them is ρ. often there are problems in 
which the number K is very large; in this case the vari-
ogram modeling is a complex and resource-intensive task 
(armstrong 1984).

That is why the concept LAG, an interval along the axis 
distances ρ, is introduced, and why the variogram is calcu-
lated in the following way:
• ρmax =    max|xi – xj| divided at equal intervals of points 

hm:h0 = 0, hm = hm–1 + LAG, m ϵ {1, 2,…, M};

• at each point hm the value of the smoothed experimen-
tal variogram is calculated by the equation:

for all i, j ϵ {1, 2,…, N}, hm–1 < |xi – xj| ≤ hm, km is the number 
of pairs of points, the distance between them falls into the 
interval distances (hm–1, hm].

obviously, the smoothed experimental variogram ob-
tained by the described principle will be smoother, but 
simpler for modeling. This variogram will be called the 
smoothed experimental variogram.

The advantage of this approach is easy to see, defin-
ing the computational complexity of calculating the coef-
ficients of theoretical models by least squares.

suppose we have N input points and the distance be-
tween them is unique, then we get 0.5*N  (N + 1) pairs 
(ρ, γ(ρ)) in the experimental variogram. The number of 
machine operations that must be carried out to find the co-
efficients of the model by least squares equals 0.5 (6 + A1)
N (N + 1), where A1 is the number of operations of the cal-
culation of values of theoretical variogram, and 2 ≤ A1 ≤  26 
for models considered by the authors (katsalova, shpyg 
2014). obviously, the computational complexity of calcu-
lating the coefficients of the model will be O(N2).

Let us introduce LAG = hmin, where hmin =   min|xi – xj|. 
The smoothed variogram will be presented in sequence 
pairs (hm, γ(hm)), m ϵ {1, 2,…, M}, M ≤ N. Then the num-
ber of machine operations in the calculation of coefficients 
of the model of the least squares method equals (6 + A1)
M and computational complexity will be not more than 
O(N). obviously, finding the coefficients of the theoreti-
cal model, which is based on the smoothed experimental 
variogram, is an order of magnitude faster than it is based 
on the original.

explore the error of averaging of the experimental 
variogram.

Let the initial experimental variogram be represent-
ed by a set of pairs (ρk, γ(ρk)), ρk ϵ [0, ρmax], k = 0, 1,…, 
0.5N (N + 1). suppose that the experimental model is de-
scribed by some continuous and differentiable function 
ƒ, that is ƒ(ρk) = γ(ρk) and its derivative are bounded on 
[0, ρmax]. we introduce into the computational domain 
[0, ρmax] the grid:

when building the smoothed models, the function ƒ(ρ) 
was replaced by piecewise linear function P(ρ):

v(x*) = ∑ wiv(xi)
N
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Then ƒ(ρ) = P(ρ) + R(ρ), R(ρ), is the smoothing error. 
since we are interested in estimating the error R only in the 
nodes of the grid ω, it is enough to consider:

according to Lagrange’s theorem:

summing the last inequality to the entire domain, we 
obtain the estimation:

in which ƒ(ρk) = γ(ρk):

The assessment (4) indicates that the error of the av-
eraging is limited and depends on the averaging interval.

The next numerical experiment illustrates the obtained 
mathematical evaluations.

consider the cosMo model forecast for the estimated 
area from 44.5° to 52.5° north and from 22° to 40° east 
with a spatial step of 0.5. interpolation of the forecast of 
temperature on the grid of Ukrainian weather stations by 
the kriging method based on Gaussian variogram was per-
formed. The theoretical model is obtained on the basis of 
the appropriate experimental variogram and on the basis 
of the smoothed experimental variograms with different 
averaging intervals.

The experimental variogram of temperature forecast 
in the said computational domain consists of 410 pairs 
(ρ, γ(ρ)) and is shown in Fig. 1a. The same figure shows 
the Gaussian model, built by the least squares, based on 
experimental variogram of forecast data for 03 UTc 08 
april 2012.

For comparison, it is worth mentioning that experi-
mental values of the variogram of the forecast of mete-
orological parameters obtained in UHMi using the cos-
Mo model consist of 10972 pairs (ρ, γ(ρ)). it is clear that 

the construction of the variographical model by the least 
squares on such a large array of data takes a lot of com-
puter time.

Based on the initial experimental variogram, the 
smoothed experimental variograms with lags of 0.5°, 1°, 
2°, 4° respectively were constructed. These variograms 
were used for obtaining Gaussian models for each lag. 
in Fig. 1b are shown: the smoothed variogram for LAG = 
0.5°, the Gaussian model that is based on this experimental 
variogram.

Mean-square errors  of the variographical models 
based on primary and smoothed experimental variograms 
shown in Table 1. Mean-square errors between observed 
and calculated temperature (°c) obtained through kriging 
interpolation of the cosMo model forecast from a model 
(regular) grid to the Ukrainian meteorological stations net-
work (irregular grid) are also represented in Table 1 (see  
σ of interpolation).

From Table 1, we can see that the mean-square errors 
for the initial experimental variogram are somewhat larger 
than the mean-square errors for the smoothed experimen-
tal variogram with LAG = 0.5°, 1°, 2°. This effect occurs 
because a large number of points leads to increased er-
rors of variography, and consequently interpolation. For 
the smoothed experimental variograms, the mean-square 

P(ρ) = { ƒ(0), ρ = 0,
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|γ(ρk+1) – γ(ρk)|
(ρk+1 – ρk)

Fig. 1. a) experimental variogram of cosMo forecast for  
03 UTc 08 april 2012; Gaussian model is based on this experi-
mental variogram; b) smoothed experimental variogram (LAG 
= 1°); Gaussian model is based on this experimental variogram
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errors of variography and kriging interpolation increase 
with the increase in LAG, but the increase in interpola-
tion error is less significant than the variography error. at 
the same time, the number of nodes of the smoothed ex-
perimental variogram is significantly less than the number 
of nodes of the initial experimental variogram which, of 
course, also significantly reduces the computing time of 
interpolation. The numerical experiment fully confirmed 
the theoretical research.

4. Determining the optimal lag

consider the problem of the choice of lag which would 
provide the optimal ratio of accuracy of correlation data 
and cost of computing time.

suppose LAG = m · hmin, where m = 1, 2,…, M:

[]round is rounded to an integer.
it is shown above that the time required to obtain the 

coefficients of the theoretical variogram will be equal to  
(6 + A1) Mτ at m = 1, where τ is the time required by com-
puters to perform one operation.

introduce a function that will reflect changing the com-
puting time needed for the calculation of coefficients de-
pending on the change of lag:

The function of the change of error smoothing in the 
experimental variogram depending on the value of lag is 
written using (4):

The value m that allows the determination of the opti-
mal LAG is obtained from a two-criteria problem:

solving the problem (9), (10) is as follows:
• replace two criteria with one:

where α, α ϵ (0,1) is a parameter that lets you set the 
priority of criteria (9), (10) in determining the optimal 
lag;

• find the minimum point of the function F(m):

wherefrom:

Then, without limiting the generality, we can state that 
the optimal lag is found from the equation:

where: hmin is the minimum distance between input points;

points; A1 is the number of operations in the model for which 
ratios are calculated; A2 is calculated from equation (5).

Thus equation (13) makes it possible to calculate lag, 
which would provide the optimal ratio of accuracy of the 
spatial distribution of data and the cost of computer time 
to determine the coefficients of the variographical model. 
in determining the optimal lag, the priority of criteria (9), 
(10) can change depending on the conditions and objec-
tives of a specific task.

5. Determining the optimal lag for data forecast model 
COSMO

Let us show how the eq. (13) operates with a practical ex-
ample. consider the interpolation of the meteorological param-
eters of the cosMo model forecast (doms 2013) on the grid 
of Ukrainian meteorological stations by the kriging method.

Table 1. comparison of variography (Gaussian model) and krig-
ing interpolation that are conducted on the basis of the initial 
experimental variogram and smoothed experimental variograms 
with different steps of averaging
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The estimated grid of the cosMo model for the ter-
ritory of Ukraine is an array of 21 109 points (de Morsier 
et al. 2015), in which every 3 hours forecasts are obtained 
for 17 meteorological parameters with a forecast period of 
78 hours. it is clear that the processing of such a significant 
amount of data requires considerable computer time. The 
reduction of the time for the post-processing of the model 
is an extremely important issue. This is why the need for  
a smooth experimental variogram for during kriging inter-
polation of data from cosMo forecasts is apparent, and, 
therefore, there is a problem in determining the optimal lag 
for a smooth variogram.

Thus, we have a set of input data, which is a set of nu-
meric values of some meteorological parameter in 21 109 
nodes of a two-dimensional computational grid. The dis-
tance between nodes h = hmin = 0.125°. The grid covers the 
area from 42.5° to 55° north, and 17° to 43°east, i.e. the 
maximum distance between two points. Hence, according 
to (6), M = 231.

For kriging interpolation of various parameters, differ-
ent theoretical models are used (katsalova, shpyg 2014). 
To illustrate the determination of the optimal lag, the sur-
face pressure data of the cosMo forecast model for Feb-
ruary 2014 will be used. in (katsalova, shpyg 2014) it is 
shown that linear (A1 = 2) and Gauss (A1 = 8) models re-
produce the best correlation structure of the pressure field. 
From (13) it is clear that LAGopt will vary depending not 
only on the choice of the theoretical model, but with each 
set of data, as A1 changed for each new array of pressure 
values. The value A2 is calculated with the equation (5).

Let us also consider two cases of the priority of crite-
ria. in the first case, assume that the criteria of accuracy 
and the criteria of time have equal priority (α = 0.5). in the 
second case the criteria of accuracy is considered much 
more important than saving machine time (α = 0.1).

Given all of the above, a series of numerical experi-
ments were performed. Their results are given in Table 2.

according to the data presented in Table 2, LAGopt 
(in the common case LAG has the same units as ρ, here 
– degree of latitude/longitude) changes significantly with  
a change in the priority of criteria. For models with a large 
number of operations the interval is naturally larger than 
for models with a small number of operations. LAGopt var-
ies for each set of input data, but this change is limited, and 
we can talk about the definition of average LAGopt for this 
task of pressure data interpolation.

it should be noted that when α = 0 (maximal accura-
cy is priority, calculation time is not important) or α = 1  
(a low level of accuracy is acceptable, the calculation time 
is important), in such cases problems (9) and (10) should 
be solved the separately, and equation (13) does not give 
the correct solution.

6. Conclusions

The research of smoothing of an experimental vari-
ogram by introducing lag was conducted. The advantages 
and disadvantages associated with smoothing were indi-
cated. The saving of computer time and the simplification 
of the definition of the theoretical variogram are signifi-
cant, and this transition is prevalent in solving problems 
with large amounts of input data. at the same time, the 
smoothing of the variogram produces an error. its evalua-
tion is obtained in this work.

The research, the purpose of which was to establish 
the size of the optimal interval, based on the criteria of 
accuracy and economy of computing time for solving the 
problem, was conducted. a two-criteria problem, making 
it possible to determine LAGopt, taking into account the pri-
ority of each criterion, was solved. it is established that the 
value of the optimal interval depends on the prioritisation 
of criteria as well as on the type of variogram and correla-
tion structure of input data.

The definition of LAGopt was provided with the exam-
ple of the problem of interpolation data from the cosMo 
forecast model of a pressure field.

The results may be useful when using kriging for 
problems related to the interpolation of meteorological 
parameters and for other problems of data interpolation.
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